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Highlights

 A joint model of multi-site production and marketing is established.
 Revenue management concept in aggregate production planning problems is considered.
 A new decreasing power function with leakage rate is developed.
 Generalized geometric programming approach is tailored in the solution algorithm. 
 Applicability of the proposed framework is studied in a garment supply chain.
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Enhancing supply chain production-marketing planning with 
geometric multivariate demand function (a case study of textile 

industry) 

Abstract

In this paper, a multi-period, multi-product, multi-site, multi-sales channel aggregate production planning problem 
including ordering preferences is presented in an integrated two-echelon supply chain to avoid the sub-optimality 
caused by separate, sequential decisions of production and the marketing/retailing chain. Each customer demand 
class is affected by price, marketing expenditures and product quality involving customer willingness-to-pay. In 
addition, the immigration of customers between submarkets (i.e. cannibalization) is considered in the market-
segmented environment due to imperfect segmentation. This research develops a geometric programming model 
to formulate the issue of joint price differentiation and multi-site aggregate production planning decisions by 
maximizing the total profit of the supply chain. To tackle the model and obtain solutions, we tailor an efficient 
analytical solution procedure to convert the original highly non-linear programming model into a convex 
programming equivalent. Finally, a numerical study of garment supply chain is presented to demonstrate the 
performance of the model and solution approaches. The research findings indicate a positive relationship between 
the scaling constant of price-dependent demand and the total profit rate. Moreover, as price gaps grow, the utility 
of price differentiation is decreased. 

Keywords: Multi-site production planning, Integrated production-marketing, Price differentiation, Geometric 
programming, Non-linear programming. 

1.  Introduction

Aggregate production planning (APP) has been traditionally receiving a lot of attention as 
a leading operation planning technique. The APP is to aggregate all production information in 
a medium term planning horizon to meet demand swings using shared physical resources. 
Supply chain responsiveness and excellency may thus be enhanced through efficient 
implementation of APP. 

Evidently, intra-organizational supply chain management requires cross-functional 
integration within a firm. For the functional areas of the firm, marketing and production sub-
plans constitute the most important features of the corporate plan. These plans require many 
specific decisions in order to meet corporate financial growth, market share and other 
objectives. Conventionally, production and manufacturing plan is guided by the marketing 
planning with the realized demand. The function of marketing plan is to specify the type of 
products to be offered, its sales channels and its price, while production and manufacturing 
plan determines how to efficiently utilize and allocate corporate resources to deliver the 
marketing. Instead of using a coordinated strategy, these plans are often developed 
sequentially/individually in different departments. For further clarification, consider a market 
with fierce competition such as the apparel industry. The marketing department is willing to 
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use a wide range of instruments (e.g. pricing and marketing expenditures) to stimulate 
consumer demands or set the customer needs and wants in different sales channels. In this 
regard, the production department, to meet demand fluctuations, then determines production, 
inventory and workforce levels over the planning horizon. As Berry et al. (1999) stress, the 
debate of the linkage between manufacturing and marketing are crucial whenever an enterprise 
tends to be competitive in the target market. 

It is worthwhile to note that practitioners suffer from the lack of coordination between 
marketing and production functions. By reviewing marketing–operations interface models, 
Tang (2010) argued the significant importance of coordination between the internal-focused 
functional area (i.e. operation and production) and the external-focused function (i.e. 
marketing)2. Piercy (2010) stresses that marketing and operations areas are interdependent. In 
this regard, cross-functional collaboration is crucial for the proper alignment of marketing and 
operational plans. This collaboration has been known as a prerequisite for effective firm 
performance (Piercy and Ellinger, 2015). To be specific, Hess and Lucas (2004) studied Sport 
Obermeyer Company (an apparel producer with several stores throughout the US) that faces 
the integrated decision between its marketing and production plans. More surprisingly, Berry 
et al. (1999) exemplified an apparel company located in Thailand (named Anonke Apparel) to 
illustrate the importance of the coordination of marketing/manufacturing strategy. Anonke 
Apparel operates in multiple demand classes such as our case study. This company tries to 
overcome “the inability of marketing and manufacturing to jointly develop consistent 
strategies” (Berry et al. 1999), despite massive investments in manufacturing. Fisher et al. 
(1994) studied The L.L. Bean Company (a waterproof boot and clothing producer) for its 
challenges related to inventory planning and market demands. At Clothco (an internet-based 
clothing retailer), the misalignment between operations and marketing departments led to high 
operational costs (Piercy, 2010). In addition, there exist several practical real-world examples 
in the joint production-marketing literature (e.g. Tang et al., 2009; Tang, 2010; Chan et al., 
2004). More recently, Lamas and Chevalier (2018) noted companies are increasingly adopting 
the sales and operation planning. 

Moreover, the constant demand assumption is unrealistic for most retailing industries, 
especially at the operational level of supply chains. Indeed, one of the key operational issues is 
to deal with the market-dependent issue in demand estimation. Incorporating demand-
dependent issues will not only improve the realism of the APP problem, but is also likely to 
generate new and relevant insights. In real life, the demand rate for a specific item, especially 
for textile products, can be affected by many parameters such as the selling price, advertisement 
and other marketing parameters. 

Differential pricing in market-segmented situations has long been acknowledged as a 
profitable pricing policy (Philips, 1989). It has been reported by many research studies (see 

Philips, 2005; Zhang et al., 2010; Braouezec, 2012; Raza, 2015) that there are numerous 
examples in which a firm persuades or manipulates its customers to different channels using 
differentiated prices as a strategy to increase the profits when consumers' tastes and valuations 

2The interested reader may refer to Figure A.1 for a conceptual model for coordination between production and 
marketing.
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of an item differ. As Ghasemy Yaghin et al. (2015) mentioned, perfect market segmentation is 
usually impossible for the practitioners. That is, it is unrealistic to imagine that this total 
potential gain could easily be captured, since immigration to pay the lower price acts as a 
powerful incentive for customers in high-priced segments. Notably, this switching behavior, 
which is also referred to as cannibalization, allows some degree of demand leakage from the 
high-priced market segments to the low-priced segments. Some recent studies have taken into 
consideration the demand leakage effect on joint pricing and inventory control. These studies 
include Zhang et al. (2010) and Raza (2015). 

Due to the demand fluctuations and resource restrictions, cost-efficient production 
planning is an important problem over a midterm planning horizon in many industries such as 
the garment industry. Optimizing capacity utilization is extremely difficult in this labour-
intensive industry with demand dependent on the trio of price, advertisement, and quality. The 
situation gets even harder if there is a two-echelon supply chain, one of which consists of 
multiple parallel manufacturing sites. Over a midterm planning horizon, the workforce levels 
of regular time and overtime, the numbers of workers to be hired and laid off in each site at 
each period, and the inventory levels of raw material and finished product to be carried for each 
period should be determined to meet the variable demand. The central problem here is
to optimally coordinate the demand-related decisions (price-setting and marketing expenditure 
determination) and supply-side decisions (cost-efficient production and ordering planning). 

The newly considered assumptions of this paper can be attributed to the realization of 
several industrial APP situations namely textile supply chains. As Leung et al. (2003) mention, 
a multinational textile company with its manufacturing factories located in Asian and European 
countries is an instance of this kind of apparel industry. Moreover, ordering preferences are 
taken into account to supply the textile products from credible manufacturers. The retailing 
planning department collects orders and faces multiple distribution channels (e.g., offline and 
online stores). In the presence of relative substitutability of apparel products in the market, 
demand for these items is highly dependent on price and quality. Therefore, whenever the price 
of these products in a sales channel is high, customers attempt to find a way to immigrate to 
other sales channels. Lastly, marketing expenditures are generally spent on textile items to 
amplify demand and avoid extended storage times, especially for fashionable ones.

In summary, the research questions (RQ) that this study aims to address are:
 RQ1: How are the marketing and revenue management (RM) practices incorporated into 

the aggregate production planning issues with the presence of multivariate customer 
demand response curve? What is the appropriate integrated policy of production and 
marketing over the tactical horizon in order to determine order and production quantities 
as well as market-dependent variables? 

 RQ2: How do the marketing aspects influence the total profit? To that end, the research 
is going to investigate the impact of marketing expenditures and pricing parameters on 
the total profit. 

 RQ3: Will the total profit be affected by the leakage rate between market segments? What 
are the roles of price differentiation and demand leakage rate in the multi-channel 
retailing of the two-echelon supply chain?  
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The main purpose of this study is to develop an APP model through the lens of revenue 
management where the demand rate depends on the selling price, marketing expenditures and 
quality in a market-segmented environment. To answer these questions, we develop a novel 
mathematical programming model to jointly determine marketing and production plan over the 
tactical planning horizon. In the proposed model, the demand rate is assumed to be a decreasing 
continuous power function of the unit selling price, increasing function of marketing efforts 
and quality of the products. The function is considered in the presence of leakage behavior 
when the retailer faces multiple demand classes in a two-echelon supply chain. Logically, the 
retailer is willing to order its needs as much as possible from credible manufacturers (i.e. 
ordering preferences). Besides, the production echelon consists of multiple (parallel) 
manufacturing sites that are connected to a multi-sales channel retailing echelon. Based on 
these assumptions, a geometric mathematical model is formulated, and a novel solution 
methodology is developed to maximize the total profit of the supply chain.

To summarize, the main contributions of this research work are as follows.
 From a practical point of view, 

1) We identified that products’ prices, marketing expenditures and products’ quality 
are the major drivers of customers demand in many industries3. Hence, we take these 
features into account in the customer response curve modelling. As a consequence, 
a novel, comprehensive demand function is proposed to take customer behavior into 
consideration. In detail, this demand is a decreasing power function of the unit 
selling price, increasing function of marketing efforts and the quality of the products 
in the presence of leakage behavior. 

This aspect of our contribution addresses part (1) of the first research question (i.e. RQ1) 
and RQ2. The research finding indicates a positive relationship between the scaling constant 
of price-dependent demand and total profit rate. Furthermore, marketing activities and product 
quality perform active roles in the total profit of the supply chain. Our numerical results also 
show that the higher marketing budget leads to more profitability in comparison with the fixed 
overall marketing investment. 

2) The need of multi-site production, as a parallel manufacturing system, has been 
heavily emphasized to meet demand fluctuations in several industries4. Hence, a 
multi-period, multi-product, multi-site, and multi-sales channel aggregate 
production-marketing planning problem with ordering preferences is presented in a 
two-echelon supply chain, considering imperfect market segmentation, to avoid the 
sub-optimality caused by separate, sequential decisions of production and 
marketing/retailing chain. 

Part (2) of RQ1 is investigated via this facet of our contribution. We build an integrated 
multi-site production-marketing mathematical model. Through this, our numerical result shows 
that production sites actively try to meet an imperfect market-segmented consumer demand 
over the tactical planning horizon.

3For instance, the nature of the newly developed products indicates that demand is highly dependent on the 
aforementioned drivers. Meanwhile, Simchi-levi et al. (2008) noted that product quality of apparel products and 
prices are important to profitability through investigating of Zara Company.
4Automotive (e.g. Bullinger et al., 1997; Gnoni et al., 2003; Torabi and Hassini, 2009), LCD (Chen et al., 2009), 
textile (e.g. Leung et al., 2003; Leung et al., 2006) manufacturing industries are notable instances.
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3) Unlike the vast majority of APP problems studied in the literature, this research 
investigates a multiple sales channel problem that is widely observed in the market 
sector. Therefore, we develop a decision tool that can assist supply chain managers 
to better understand the effect of price differentiation with leakage behavior on the 
joint optimal production, pricing and ordering policies in APP-related decisions with 
product quality and ordering preferences. Considering the effects of product quality 
on end consumer demand is the other factor that differentiates this paper from the 
previous ones existing in the literature. Finally, a real case study in the clothing 
supply chain is studied to show the model applicability and effectiveness of the 
solution procedure.

RQ3 is addressed by this aspect of contribution. We found that as price gaps grow, the 
utility of price differentiation is decreased. In other words, there is an inverse relationship 
between the leakage rate and supply chain profitability. This finding is consistent with that of 
Zhang et al. (2010) and Ghasemy Yaghin (2018).

 From a theoretical point of view,
o A new non-linear optimization model is formulated to determine the production-
marketing planning under consideration. It includes power functions and non-convex 
terms in the objective function and constraints. 
o A novel solution procedure regarding generalized geometric programming is 
involved to tackle the resultant non-linear programming (NLP) model. The procedure 
utilizes a convexification strategy and transforms non-convex signomial terms to 
convexified counterparts. In other words, an analytical algorithm is tailored to search 
the solution space in an effort to determine the optimal decision variables. 

The remainder of this paper is organized as follows. We first review the literature related 
to the focus of our study in Section 2. Section 3 mathematically models the supply chain 
production planning problem with price differentiation and ordering preferences. The solution 
algorithm based on the geometric programming approach is presented in Section 4. Section 5 
provides an application of the proposed framework in a garment supply chain. Finally, 
suggestions and concluding remarks are provided in Section 6.

2.  An overview of literature

2.1. APP in supply chains

Over the past decade, there has been an increased interest in APP modeling situations that 
involve more than one element of a supply chain. Kanyalkar and Adil (2007) studied time and 
capacity aggregated multi-site production planning, a detailed production planning and a 
detailed distribution planning concurrently and formulated the problem by a mixed integer 
linear goal programming model (MILGP) to make an integrated optimal supply chain plan. 
Torabi and Hassini (2008) integrated distribution, production, and procurement planning into 
a single model which also included multiple suppliers, one manufacturer and multiple 
distribution centers. The critical parameters were in uncertainty and conflicting objectives were 
considered simultaneously for a supply chain master planning model. In a multi-site logistics 
system, Kanyalkar and Adil (2010) further addressed integrated detailed production, 
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procurement and distribution plans in which a countrywide aggregate production plan is 
integrated with a detailed plan. They developed a robust optimization model considering model 
robustness and solution robustness in the objective function for integrated planning in three 
dimensions. In a supply chain under uncertainty, Al-e-hashem et al. (2011) presented a multiple 
objective programming model for multi-site APP considering customer satisfaction. In a 
similar line, Leung et al. (2006) analyzed the multi-site APP problem by demand uncertainty. 
In a multi-national environment, Leung and Chan (2009) studied the APP problem with 
resource utilization consideration in a surface and materials science company. Also, Fahimnia 
et al. (2013) reviewed the state of the art in integrated production–distribution planning models 
and classified the literature into seven categories based on the degree of complexity.

More recently, Gholamian et al. (2016) developed a mathematical model for APP in a 
supply chain under demand uncertainty by a fuzzy multi-objective optimization method. The 
multiple objectives were total loss, customer satisfaction, labor productivity, and variability in 
a multi-product, multi-site and multi-period supply chain network. Considering collection and 
recycling centers, Entezaminia et al. (2016) proposed a multi-objective model for a multi-site 
APP problem in a green supply chain in order to incorporate the profit and green principles in 
an APP problem. They made a distinction between products in terms of environmental criteria 
such as recyclability and ease of disassembly, biodegradability, energy consumption and 
product risk quantified by AHP methodology. Sarkar (2013) also addressed the production-
inventory problem for a deteriorating item in a two-echelon supply chain with transportation 
consideration. There are also lots of papers to deal with the production-distribution problem 
(see Torabi and Moghaddam, 2012; Fahimnia et al., 2013; Raa et al., 2013; Su et al., 2015; 
Zheng et al., 2016 and references therein).

Quality improvement is taken into consideration by Kim and Sarkar (2017) in a joint 
replenishment problem to clean a complex multi-stage production system from defective items. 
They proposed a stochastic inventory model to determine replenishment and shipment policies 
along with the quality factor. Considering the inspection of the product’s quality, Sarkar (2016) 
addressed a supply chain coordination problem in a two-echelon setting to reduce the joint total 
cost among supply chain members. Some research works studied the quality of the returned 
products in reverse logistics and sustainable supply chain problems. For instance, Guo and Ya 
(2015) studied a manufacturing/remanufacturing system in which the recycling rates, buyback 
cost and remanufacturing cost are dependent on the different quality level of recycled products. 
Pariazar and Sir (2018) investigated the impact of disruptions on product quality and 
availability in integrated strategic and tactical supply chain planning problems. Sarkar et al. 
(2017) incorporated the quality dependent price of the returned product into a multi-echelon 
integrated manufacturing system with a third party logistics provider.  

2.2. Marketing and RM in APP studies

In the real competitive world, the practice of allowing pricing and RM is increasing, and 
the relevant midterm tactical planning is becoming more interconnected with retailing, 
marketing and distribution activities. In this vein, few operations research-based works are 
applied to consider the RM practice with APP problems and therefore, the body of literature is 
very scarce in this regard. Aucamp (1986) incorporated marketing issues into the basic 

http://www.sciencedirect.com/science/article/pii/0307904X86900107
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production planning model. Feiring and Mak (1995) developed a closed-loop procedure to link 
APP with marketing pricing for single item environment and dynamic demand. Besides, 
Yenradee and Sarvi (2007)analyzed the relationship between the price of the product and the 
amount of demand, and developed an integrated APP and pricing to determine suitable prices 
of the product in each period with elastic demand.Yenradee and Piyamanothorn (2011) 
investigated the integrated model of aggregate production planning and marketing promotion 
planning for a real case of a consumer product factory in Thailand. They provided a general 
optimization model that can help make decisions in marketing promotion in accordance with 
production planning to maximize the profit for the company. Martínez-Costa et al. (2013) 
reviewed the aggregate production and marketing planning models from the mathematical 
optimization point of view. Remarkably, the only research studies that include RM practices in 
APP literature are those of Ghasemy Yaghin et al. (2012) and Ghasemy Yaghin (2018). 
Ghasemy Yaghin et al. (2012) took into account a multi-period discount problem for products 
that undergo several price cuts over time. In their approach, the prices gradually decrease, as 
newer, more advanced products replace them in the market such that a retailer charged a single 
price to different customers for exactly the same good. Namely, more elastic consumers are 
charged with lower prices, and less elastic consumers are charged with higher prices. This can 
lead to “unfair” outcomes and additional profit can be extracted from a marketplace by tailoring 
different prices (Raza, 2015). Ghasemy Yaghin (2018) addressed the APP problem with 
multiple demand classes by non-linear optimization formulation. He considered consumer 
demand in each market as a function of advertisement and selling price. 

On the other hand, as a continuance of Ghasemy Yaghin (2018)’s paper using a geometric 
programming solution procedure, we develop a multivariate demand response curve depending 
on quality issues to formulate the consumer behavior. Moreover, we take backorder level and 
ordering preferences of an integrated supply chain production-marketing problem into 
consideration in a parallel logistics system. 

Features of the publications surveyed in this section are summarized in Table 1. It is 
apparent that no previous APP model has simultaneously considered differential pricing and 
multiple sales channels of retailing echelon, especially with leakage behavior, price and 
quality-dependent demand with credible sources of order. Combining these elements, this 
paper presents a geometric programming model in which the consumer demand depends on 
the selling price, marketing expenditures and quality as a decreasing power function. 

Table 1 to be inserted here

Noteworthy, in the column of optimization approach, LP and MONLP mean linear 
programming and multi-objective non-linear programming, respectively. MOLP denotes 
multi-objective linear programming. Moreover, GP is an abbreviation of geometric 
programming. 

3.  Mathematical formulation
3.1.  Problem description

The problem can be described as follows: consider a two-echelon supply chain including 
 production sites (PSs) manufacturing  product families for a retailer with  sales sn gn msn
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channels to meet the consumer demand. The retailing echelon is willing to acquire the items 
from the parallel plants where they are produced, and this acquisition causes an inventory 
ordering cost and also a holding cost. Moreover, retailing echelon, operating in a monopoly 
market, is involved in storing and selling  finished products to different classes of customers gn

in  pre-determined market segments (MSs). Additionally, the demand response function is msn
really affected by price, product quality and marketing expenditures. A set of production sites 
is to deliver orders to manufacture different types of products by involving some issues related 
to the plant operation and labors over  planning horizon. Also, some of the manufacturing phT

sites are credible with the good reputation. The plants are capacitated and must supply the 
retailer’s order. Granted that the aforementioned companies in a two-echelon supply chain 
system are connected and interrelated with each other. Our objective is to find the best planning 
decisions over a multi-period mid-term horizon, in an integrated and coordinated manner. In 
other words, the two-echelon supply chain is under centralized control and supply chain 
information from each of the echelons is available to the decision maker.

3.2.  Notation and model development

Now, we are going to describe all the components of the model. Consider the following 
sets: plants J, sales channels , product families , planning horizon  and credible msn gn phT

manufacturers BQ.

3.2.1. Parameters

The parameters of the model are the costs, inventory levels, labor level available and 
demand related ones. Following are the input parameters used in the model.

Demand and marketing parameters
kit scaling constant of price-dependent demand term of sale channel k for product 

i at period t
kit price elasticity to demand term of sale channel k for product i at period t

k elasticity of demand with respect to expenditures in market segment k

it quality elasticity of demand of product i in period t
maxBUD the maximum marketing cost ($)

LR leakage fraction between MS k and the -th MSmsn

Parameters related to production and inventory costs
r t
i jc unit manufacturing cost of product i in PS j at regular time ($/unit)
o t
i jc unit manufacturing cost of product i in PS j at overtime ($/unit)
h
ij tc unit inventory carrying cost of product i in PS j at the end of period t at the 

manufacturing echelon ($/unit)
Hr
jtc unit hiring cost in PS j at period t ($/man-hour)
Fr
jtc unit firing cost in PS j at period t ($/man-hour)

ith unit inventory carrying cost of product  at period t at the retailing echelon 𝑖
($/unit)
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ijtrepc unit replenishment cost at the retailing echelon for product i at period t  
($/unit)

Parameters related to inventory levels and ordering
min

ijtSSIP the safety stock inventory at warehouse of PS j for product i at period t (unit)
min
itSSIR the safety stock inventory at warehouse of retailer for product i in period t 

(unit)
iInitialinv initial inventory of the i-th product at retailing echelon (unit) 

iInitialbor initial back order quantity of the i-th product at retailing echelon (unit)
ijInitialinvP initial inventory of the i-th product at production site j (unit)

irf the percentage of the i-th product quantities to be ordered from credible 
manufacturers

Parameters of workforce levels
jtw l unit required labor of the i-th product at period t (man-hour/unit)

max
jtwl the maximum labor level available to PS j at period t (man-hour)
min
jtwl the minimum labor level available to PS j at period t (man-hour)

Parameters regarding machine and warehousing capacity
ijtC W P unit required warehouse space of the i-th  product in PS j at period t (ft2/unit)
itCWR unit required warehouse space of the i-th  product at period t at the retailing 

echelon (ft2/unit)
max
jtCapPL the maximum warehouse space of manufacturing echelon available in PS j at 

period t (ft2)
max
tCapR the maximum warehouse space of retailer available at period t (ft2)

max
jtMCap the maximum machine capacity available at period t (machine-hour)

j the fraction of machine capacity available for overtime use in PS j at each 
period

j t unit required machine usage of PS j at period t  (machine-hour/unit)

3.2.2. Decision variables

itBR backorder level of the i-th product in period t (unit)

i j tx regular time production of the i-th product at period t in production site j (unit)
ijty amount of product i manufactured at PS j in overtime of period t  (unit)
ijtIP inventory of product i at the end of period t at PS j (unit)

itIR inventory of product i in the retailing echelon at period t (unit)
jtH r quantity of workforce hired in PS j at period t (man-hour)
jtF r quantity of workers laid off in PS j at period t (man-hour)

Pkit the selling price of the i-th product in MS k at period t ($/unit)
ijtO the order quantity of the i-th product in PS j at period t (unit)

ktM marketing expenditure per unit in MS k at period t ($/unit)

itq quality level of product i from the customers’ point of view at period t

3.2.3. Assumptions 
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Based on the above characteristics of the considered APP problem, the mathematical model 
herein is developed on the following assumptions.

 Due to the paramount importance in channel-based price differentiation in real-world 
retailing, focal companies tend to segment the customers based on their demand 
sensitivity. Therefore, each market is divided into  market segments and each msn
segment is price differentiated based on the willingness of customers who are attributed 
by the retailer to that particular market segment. Braouezec (2016) and Braouezec 
(2012) highlighted that, in the monopoly literature, it is assumed that the underlying set 
of customers has already been divided in different segments5.

 Power demand functions have been well accepted in the pricing and production 
management literature (e.g. Samadi et al., 2013; Sadjadi et al., 2010; Abad, 1988; Kim 
and Lee, 1998; Sadjadi et al., 2012; Arcelus and Srinivasan, 1987). We assume that the 
demand response curve is an increasing power function of the product quality and 
marketing expenditure. Naturally, this curve is also a decreasing power function of 
price. This kind of demand function formulates the customer behavior regarding 
quality, selling price and marketing expenditure. 

 The production system at the manufacturing sites is aggregated into a capacitated 
single stage system i.e. considering the bottleneck stage (Torabi and Hassini, 2009). 

 The forecasted demand over a particular period can be either satisfied or backordered, 
but the backorder must be fulfilled in the subsequent period (Entezaminia et al., 2016).

 The values of all parameters are certain over the planning horizon of the next T 
(Ghasemy Yaghin, 2018).

 There are limitations on budget, space and workforce available during the planning 
horizon. Actual workforce levels in regular time and overtime, production, warehouse 
space and advertising costs cannot exceed their respective maximum levels in each 
period.

 The unit shipping cost of each product from the manufacturing sites to retailer is 
involved in the replenishment costs.

 The retailing echelon faces multiple sales channels.
 Market segmentations are incomplete and demand leakage occurs from high-priced to 

lowest-priced segments (i.e. between MSs) (Zhang et al., 2010). In real-world 
situations, customers naturally try to find a way to switch to the lowest priced segment. 
Hence, all other market segments have demand leakage relationship with market 
segment nms (i.e. the lowest priced channel).

 The retailer orders a percentage of order quantities from credible factories with good 
reputation.

3.3. Model mathematical formulation

3.3.1. Proposed demand function

5The interested reader may refer to Goldberg and Verboven (2001) and Einolf and Forgang (2006) to find real-
world examples in which a monopolist operates in market segmentation environment.
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Numerous demand functions have been proposed to estimate the future demands (e.g. 
Abad, 2003; Sadjadi et al., 2012; Ghasemy Yaghin et al., 2014). Here, we propose the 
following demand rate of the i-th product in MS k at period t by considering cannibalization 
between MSs. The proposed function is actually a generalization of Zhang et al. (2010) 
function which includes the geometric power function of price, marketing expenditure and 
product quality. 

 , , , ( )kit k it

ms mskit kit n it kt it kit kit kt it kit n itD P P M q P M q LR P P      1,.., 1 (1)msk n 

 
1

1
1

,.., , , ( )
ms

n it nms ms it

ms ms ms ms ms ms ms

n
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D P P M q P M q LR P P  







                          (2)msk n

As stated before, one of the key parts of RM is to segment a single market into multiple 
submarkets/segments and then tailor different prices in each submarket. Since market 
segmentation which a firm operates in is imperfect, setting different prices for distinct market 
segments would cause the immigration of customers from one market segment to another. 
Without loss of generality, we index the retailer’s market segments such that

. The market segment with the highest price is considered to be 1 2 1...
ms msn nP P P P   

market segment 1, the market segment with the second highest price is considered to be market 
segment 2 and so on. Via this indexing, the last market segment (i.e. market segment nms) has 
the lowest price. In real-world situations, customers naturally try to find a way to switch to the 
lowest priced segment. This is because we assumed all other market segments have demand 
leakage relationship with market segment nms (i.e. the lowest priced channel). To clarify, Figure 
1 shows the conceptual representation of the proposed demand function in two segments. 

Figure 1 to be inserted here

3.3.2. Objective function

The total profit of the system is equal to the revenue minus total costs of the two-echelon 
supply chain. Therefore, the mathematical formulation of the total profit is as follows: 
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1 1 1 1 1 1 1 1 1

ph ph g ph g phs s sT T n T n Tn n n
Hr Fr
jt jt jt jt it it ijt ijt

j t j t i t i j t
c Hr c Fr h IR repc O

        

      
(3)

Objective function (3) represents the difference between the revenue generated by selling 
the products in channels and the total cost. Equation (3) includes 11 mathematical terms. Terms 
(1-2) calculate the sum of  over all products in all segments in all periods. Terms (3-4) kit kitP D
formulate the total marketing costs. Term 5 is the regular time production cost. Similarly, the 
overtime production cost is computed by Term 6. Term 7 represents the inventory cost of the 
finished products at sites. Hiring and firing costs are considered by Terms (8-9), respectively. 
Term 10 includes the holding cost at the retailing echelon.

3.3.3. Model constraints

The objective function is subject to the following constraints and equilibrium conditions:

1 1 1 1
1 1

msnJ

i i ij i i ki
j k

Initialinv Initialbor O IR BR D i
 

       (4)

, 1 , 1
1 1

2,.., ,
msnJ

i t i t ijt it it kit
j k

IR BR O IR BR D t T i 
 

        (5)

min ,it itIR SSIR i t  (6)

1 1 1 1 ,ij ij ij ij ijInitialinvP x y IP O i j     (7)

, 1 2, .., , ,ij t ijt ijt ijt ijtIP x y IP O t T i j       (8)

min , ,ijt ijtIP SSIP i j t  (9)

max ,it itBR BR i t  (10)

   , 1 , 1 , 1
1 1

2,.., ,
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i t ij t ij t jt jt it ijt ijt
i i

Wl x y Hr Fr Wl x y t T j  
 

        (11)

  max

1
,

gn

it ijt ijt jt
i

Wl x y Wl j t


   (12)

. 0, ,jt jtHr Fr j t  (13)
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max
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y MCap j t 


  (17)
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kit n it
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




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
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max , ,ijt jtO MCap i j t  (19)

0 , ,kitD k i t  (20)

 
1

,
sn

i ijt ijt ijt
j j BQ

rf O x y i t
 

    (21)

0 1 ,itq i t   (22)

, , , , , 0 , , , P , 0 , , ,it ijt ijt jt jt ijt ijt ijt kit ktBR IP IR Hr Fr O x y M i j k t   (23)

Constraints (4) and (5) are the balanced equations for the products in retailing echelon at the 
end of period 1 and period , respectively. Constraint (6) provides safety stock levels 2,..,t T
at the retailing echelon. Constraints (7) and (8) are inventory and production balance equations 
at PS j for the i-th products at the end of period 1 and period . Minimum safety stock 2,..,t T
limitations at the manufacturing echelon are imposed by constraint (9). Constraint (10) limits 
the shortage of products to the maximum allowed level.

Constraint (11) guarantees that the available workforce in each period is equal to the 
workforce in the previous period plus any changes in the workforce level during the current 
period. Constraint (12) expresses the upper bounds of labor levels at the PS j. Constraint (13) 
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emphasizes that either hiring or firing is allowed in a particular period. The capacity restrictions 
for the warehouse’s space of the retailer and PSs and machine capacity in PS j at period t are 
presented via constraints (15-17).

Constraint (18) reveals the limitation on the total budget available to marketing 
expenditures. The capacity constraint of PS j at each period for ordering quantities of the i-th 
product from retailing echelon is considered by inequality (19). Constraint (20) reflects the fact 
that the demand rate is non-negative. Ordering preferences of the i-th product at period t are 
taken into account by constraint (21). There is a fraction parameter used in this constraint, , irf
in which the value of this fraction is determined by the retailer. By constraint (21), ordering 
from credible manufacturers with good reputation is ensured regarding this fraction. Constraint 
(22) shows that the quality level of the product from the customers’ point of view cannot exceed 
1.  

Finally, Equations (23) demonstrate the ‘variables’ constrains enforcing non-negativity 
restriction for all decision variables. In the presence of the objective function and Constraints 
(4-5) and (18), the proposed model is a highly nonlinear model with some geometric terms.

4. The proposed solution methodology: Generalized geometric programming

The optimization model at hand is actually a non-convex non-linear programming (N-

NLP) formulation (henceforth, we try to minimize the instead) with some (1)Org OrgTPS TPS 
geometric expressions. Generally speaking, geometric programming (GP) is an approach to 
solve algebraic non-linear optimization problems. Originally developed by Duffin et al. (1967), 
GP with posynomials provides a powerful method for studying many problems in optimal 
engineering design. Notably, the GP technique is efficiently capable of tackling this type of 
global optimization approach by properly selecting power transformation (Duffin et al., 1967; 
Boyd et al., 2007). Its intriguing structural properties as well as its elegant theoretical basis 
have caused a number of beneficial applications and the development of numerous useful 
results (e.g. Liu, 2009; Samadi et al., 2013).

Generalized geometric programming (GGP) is the class of optimization problems where 
the objective function and constraints are signomials. Importantly, (posynomial) GP fails to 
find the optimal solutions with the presence of signomial terms. This is so because GGP might 
have multiple minima. When (posynomial) GP formulations suffer from the presence of 
negatively signed monomials in the models for important applications, GGP has been studied 
by many researchers (e.g. Blau and Wilde, 1969; Floudas, 2000; Tseng et al., 2015).

Unlike GP problems in inventory control studies (e.g. Mandal et al., 2006; Sadjadi et al., 
2012 and references therein), our mathematical model is a GGP one. This kind of formulation 
leads to a global optimization problem that is difficult to solve. The mathematical model at 
hand can be written as the difference of two posynomials. We embed the idea of  Floudas (2000) 
based upon the convexification strategy i.e. transforming the non-convex signomial terms for 
convexification based on certain power functions or an exponential function because of its 
computational efficiency. However, our optimization problem is modeled accurately by 
mixtures of using signomials and more general types of algebraic functions. Hence, an 
analytical algorithm is tailored to search the solution space in an effort to determine the optimal 
policies. In fact, the proposed approach is based on modified GP approaches. In particular, the 
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complicated mathematical optimization problem is converted into an equivalent convexified 
version by GP approaches and transformation techniques. The resultant model can be routinely 
solved via existing optimization solvers like MINOS or IPOPT in GAMS in order to find local 
optimum solutions. 

4.1. Difference of two convex functions transformation  
As we can see from the objective function and non-linear constraints, the proposed model 

is not a pure GP with posynomial terms. Actually, it includes some posynomials and also other 
types of nonlinear terms. Initially, all the terms in the objective and constraint functions of the 
resultant model are recognized and partitioned into the following classes: non-convex 
geometric terms, convex nonlinear and linear. We try to transform non-convex GP terms into 
equivalent convex expressions. As represented by Floudas (2000), the GPP problem can be 
formulated as the following nonlinear optimization problem:

0 0 0min ( ) ( ) ( )
x

G x G x G x  

Subject to.
( ) ( ) ( ) 0, 1,..,j j jG x G x G x j M    

0, 1,..,ix i N  (24)

Where    
1

( ) , 0,..,ijk

j

N

j jk i
ik K

G x c x j M







  

1

( ) , 0,..,ijk

j

N

j jk i
ik K

G x c x j M







  

In the aforementioned optimization problem,  is a vector of positive 1( ,.., )Nx x x

variables; ’s are positive posynomial functions;  are arbitrary real constants ( ), ( )j jG x G x 
ijk

and  are  the positive coefficients. Finally, contain the positive/negative monomials jkc ,j jK K 

that form the posynomial functions , respectively. Formulation (24) is a highly ( ), ( )j jG x G x 

non-linear problem with a non-convex objective function and/or constraints (Floudas, 2000; 
Gounaris and Floudas, 2008). By applying the transformation on exp( ) 1,..,i ix z i N ,
Problem (24), we obtain the following difference of two convex functions programming.

0 0 0: min ( ) ( ) ( )
x

DC G z G z G z  

Subject to.
( ) ( ) ( ) 0, 1,..,j j jG z G z G z j M    

, 1, ..,L U
i i iz z z i N   (25)

Where    
1

( ) exp , 0, ..,
j

N

j jk ijk i
ik K

G z c z j M






 
  

 
 

1
( ) exp , 0, ..,

j

N

j jk ijk i
ik K

G z c z j M






 
  

 
 

in which all functions  that are positive linear combinations of convex functions ( ), ( )j jG z G z 

are convex as well. As mentioned by Floudas (2000), a lower bound on the solution of problem 
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(DC) can be obtained by solving a convex relaxation of the original problem (DC). Every 
concave function  can be underestimated with a linear function . ( )jG z ( ), 0,..,jL z j M 

Consequently, this transformation results in the following relaxed convex programming 
problem whose solution provides a lower bound on the solution of (DC).

0 0 0min ( ) ( ) ( )Conv

x
G z G z L z  

Subject to.

( ) ( ) ( ) 0, 1, ..,Conv
j j jG z G z L z j M    

, 1, ..,L U
i i iz z z i N   (26)
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Floudas (2000) analyzed the quality of this convex lower bounding by examining the 
tightness of the underestimation based on the maximum separation. The interested reader can 
refer to Floudas (2000) for more details. 

4.2. Constraints and the objective transformation process
For non-convex terms that appeared in the objective function and constraints, we represent 

the geometric expression of our model by the following GGP classifications. It should be noted 

that these terms are obtained in after multiplication of  by subtraction. (1)OrgTPS OrgTPS
Moreover, there are some linear expressions in the original model; it is apparent that no 
transformation strategy is needed for these terms.  

1
kit k it

kit kt itG P M q    Posynomial
1

2
kit k it

kit kt itG P M q     Posynomial

1
3

nkit ms it

ms msn it n t itG P M q   Posynomial

1
4

kit k it
kit kt itG P M q    Non-posynomial (negative monomial)

1
5

n it nms ms it

ms msn it n t itG P M q    Non-posynomial (negative monomial)

6
it

it ijtG q x  Posynomial

7
it

it ijtG q y  Posynomial
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After the exponential transformations,  exp( )kit kitP P , exp( )kt ktM M  , exp( ),it itq q

and , the following relations would be obtained. exp( )ijt ijtx x exp( )ijt ijty y 

 1 expConv
kit kit k kt it itG P M q        (27)

 2 exp (1 )Conv
kit kit k kt it itG P M q         (28)

 3 exp (1 )
ms ms ms ms

Conv
n it n it n n t it itG P M q         (29)

 4 exp (1 )Conv
kit kit k kt it itG P M q        (30)

 5 exp (1 )
ms ms ms ms

Conv
n it n it n n t it itG P M q        (31)

 6 expConv
it it ijtG q x    (32)

 7 expConv
it it ijtG q y    (33)

To linearize the negative monomial terms, the following relations would be calculated:
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L L U L U L U
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The following linearization transformation is obtained:

 4, 4, 4,( ) (1 )kit kit kit kit kit k kt it itL z A B P M q         

5,n 5,n 5,n n n n n( ) (1 )
ms ms ms ms ms ms msit it it it it t it itL z A B P M q           
In this manner, the transformation could be done on . In an almost similar way, the 5G 

constraints with posynomial and/or non-posynomial expressions can be coped with. According 
to the transformation described previously, the equivalent formulation of the mathematical 
model can be derived as follows.
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(4-17), (19-22).

 This procedure allows us not only to convexify and underestimate every generalized 
signomial constraint but also to convexify the entire non-convex geometric programming 
model.

4.3. Solution procedure
Our proposed solution procedure based on GGP is described as follows:

Step 1: Formulate the considered APP problem,
Step 2: Compute and obtain the difference of two convex functions programming,
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Step 3: Generate convex underestimator for each posynomial term with exponential 
transformation based on Section 4.1,
Step 4: Linearize the concave terms regarding Sections 4.1 and 4.2,
Step 5: Obtain the equivalent convexified model and locally solve the equivalent convexified-
NLP by a solver,

Step 6: Obtain the lower bound for  and compute inverse transformation and find OrgTPS
original decision variables.

5.  A case study: Clothing supply chain

As mentioned by Nayak and Padhye (2015), the apparel industry stands out as one of the 
most globalized industries in the world. It is a supply driven commodity chain led by a 
combination of players; each plays an important role in a network of supply chains that spans 
from fibers to yarn, to fabrics, to accessories, to garments, and finally to marketing. Therefore, 
the main purpose of the numerical experiments is to investigate the applicability and 
appropriateness of the proposed framework using a simulated instance from a typical clothing 
supply chain. In fact, the necessity of a proposed approach towards differential marketing and 
supply chain production planning is shown using the application.

5.1. Setup 

A case study inspired by a clothing supply chain is presented for demonstrating the validity 
and practicality of the proposed model and solution procedure. The supply chain is supposed 
to produce six products from three production factories to fulfill the demand of three 
submarkets of a retailing echelon over a six-period planning horizon. In the clothing market, 
the retailing echelon needs to ensure that the manufacturing reputation preference can be 
fulfilled. Ordering preferences, i.e. ordering to credible manufacturers with good reputation, 
play an important role in the production planning process of textile products (Leong et al., 
2003). Due to confidentiality, most of the input data are randomly generated. However, the 
generation process is done so that they will be close to the real data available in the considered 
supply chain. Table 2 summarizes the source of random data generation. In this table, term 
‘‘U’’ and “N” implicate the uniform and the normal distribution, respectively. Without loss of 
generality and just to simplify the imperfect segmentation, we consider leakage behavior to the 
lowest price MS, i.e. -th market. Other relevant data regarding this case are as follows:msn

 Immigration behavior is taken into account by a constant proportion of leakage.
 Retailing echelon experiences price-dependent power function demand, which is affected 

by marketing expenditure and quality of textile products. 
 The first manufacturer has a good reputation in the market, i.e. . The clothing  1BQ 

retail store desires to order a percentage of orders from a credible manufacturer with good 
reputation.
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 Quantity of workforce hired does not represent the number of new workers coming on, 
but rather the quantity of new, trained workers. These workers may have been hired in 
previous periods. 

Table 2 to be inserted here

5.2. Result and discussion
The proposed model has been applied to the preceding data set to find the optimal 

production-pricing plan. The resultant convexified mathematical programming formulation has 
been modeled within the general algebraic modelling system (GAMS) environment and solved 
by IPOPT/MINOS solver. The given problem is solved on a Pentium IV running at 2 GHz on 
the Windows 7 operating system. Obtained solutions of APP are shown in Tables 3-10. 

Table 3 to be inserted here

Table 4 to be inserted here

It can be seen from Table 3 that clothing retailing echelon can tailor different prices for 
the same product by multiple demand classes. It is expectedly interesting that prices in the third 
market segments are the lowest because of imperfect segmentation. This will lead to movement 
between market segments, which is known as demand leakage. Table 3 provides an insight into 
the result, showing that the product prices of some periods are set higher. It is caused by 
significant demand variability and elasticity during these periods. While differentiating 
customers by their willingness-to-pay into multiple, the influences of the leakage behavior and 
moving between MSs cause considerable changes in the prices levels. The reported data 
indicate that our model and solution procedure work properly. In more general terms, as the 
difference between prices of segments grows, the customers are tempted to find a way to pay 
lower prices. Thus, more often than not, it decreases the utility of differential pricing. In other 
words, the outcome of such a behavior results in an unpleasant and undesirable segmentation. 
In the real world, this is much more likely to occur than the situation where customers buy the 
clothing products from their assigned segment. As correctly suggested by Zhang et al. (2010), 
considering appropriate “fences”, as a device to preserve market segmentation, can lead to 
limited spillover between segments and then economic benefit of multiple demand classes.

It should be noted that alongside the determination of the price quantities, it is certainly 
possible to generate marketing expenditures and product quality from the customer point of 
view. The results in Tables 4 and 5 reveal product quality at each period and marketing 
expenditures that the retailer should spend at some periods in order to influence the customer 
demand. As can be seen from Table 5, marketing expenditures are reduced in some periods 
when demand exceeds the capacity. Obviously, the retailer is not allowed to expend at some 
periods (see blank cells) due to maximum budgeting cost of marketing activities that has to be 
guaranteed. Moreover, regarding regulations and enforcement in some countries, the retailer is 
faced with a marketing budget limitation. Thus, adoption of these issues causes no expense on 
marketing efforts in the aforementioned periods.  
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Table 5 to be inserted here

Table 6 to be inserted here

Production plan for each plant in regular time can be seen in Table 6. As shown in Table 
6, all product types are manufactured in all factories at each period. The items to be supplied 
from the credible manufacturer are determined regarding the retailer preferences. What is more, 
manufacturer 1 produces all the items at about all periods. 

Table 7 to be inserted here

Table 8 to be inserted here

Table 9 to be inserted here

Ordering from each plant can be seen in Table 9. As shown in Table 9, the retailer orders 
all product types from all factories at all periods. Findings suggest that all production sites in 
the considered supply chain are involved with the retailers. 

Table 10 to be inserted here

We can observe from Table 10 that the model results reveal a greater hiring workforce 
level compared to firing over the planning horizon; and there is no hiring for the latest period. 
Due to the demand variability of clothing products, changing the workforce levels over a 
planning horizon is mandatory. The results from Table 10 approve such a phenomenon. 
Moreover, firing and employee layoff is under control based on the considered set of data. 

As it is seen from Table 10, due to production quantities, in successive periods 3,4 and 5, 
worker-hours reduce and as a result hiring increases and then we have hiring workforces and 
from period 5 it begins to stop and we only have layoffs.

5.3. Performance evaluation
To evaluate the performance of the proposed analytical solution algorithm, twenty random 

data sets are generated. Then, their convex lower bounding values are compared with the 
solutions of the original non-convex optimization problem at hand. We use the global solver 
of GAMS (BARON) to obtain the optimal solutions in limited-size instances. Table 11 shows 
the solution of the analytical approach and the best solution of the solver. To estimate the 
deviation of our algorithms with the lower bound, Equation (46) is used. indicates the GPF

corresponding profit of our proposed approach, and  refers to the results given by the global SlF
solver for the non-convex problem.  

 GP Sl

Sl

F FDev
F


 (46)

Table 11 to be inserted here
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This comparison indicates the effectiveness of the proposed solution approach (GGP) to 
cope with the non-convexities. Based on Table 11, it can be stated that the tightness of the 
lower bound is about 11.92% in comparison to the global solutions. 

5.4. Sensitivity analysis

This sub-section discusses analyzing the sensitivity of the decision model to some 
parameters. The parameters that are changed are as follows:

: The maximum marketing cost available to marketing activities of the focal company. maxBUD
It varies from  to 0.50% 0.50%

: The leakage fraction between demand classes. This parameter is changed as 0.15, LR
0.6,   and 0.25, 0.4, 0.8 0.9

: Scaling constant of price-dependent demandkit

: Price elasticity to demand term.kit
It is worth noting that the scaling constant and price elasticity of the first product in channel 

1 are considered to analyze the changes on the total profit. 

Table 12 to be inserted here

Table 13 to be inserted here

Tables (12-13) illustrate the results of the sensitivity analysis. It is obvious that these 
parameters have significant influences on the total profit. Maximum budget available to 
marketing activities indicates that the more the marketing budget increases, the more total 
profit will increase. In other words, the total profit of the system is sensitive to changes of 
maximum available marketing cost. The results of Table (12) also reveal that setting different 
prices for submarkets could augment the immigration of customers from high-priced markets 
to lowest-priced ones. As can be seen from Table (12), leakage rate provides negative impact 
on total profit. The more the leakage rate increases, the less the total profit is. This leads to the 
conclusion that leakage rate is observed to be more influential in multi-channel retailing. This 
finding also coincides with the literature (Zhang et al., 2010; Ghasemy Yaghin, 2018). 

Investigating the effects of changing price elasticity, price elasticity in the proposed 
geometric demand response curve has negative impact on profitability (See Table 13). As Table 
(13) shows, an increase in the scaling constant of price-dependent demand declares that the 
total profit increases. Summarizing our findings, we conclude that variation of marketing and 
demand parameters influence the total profit.

5.5. Managerial implications
The formulated model incorporates the decisions on ordering, multi-site APP, differential 

pricing and quality-dependent demand in a two-echelon supply chain with manufacturing 
ordering preferences. It is taken for granted that it is difficult to make all these decisions 
because they are closely interrelated. To cope with this, an integrated multi-site aggregate 
production-pricing planning model along with marketing issues is developed. The valuable 
structure of the proposed mathematical model with geometric terms results in a novel solution 
procedure. 
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The research findings indicate a positive relation between the scaling constant of price-
dependent demand and total profit rate and a negative impact of wide price gaps on 
profitability. We draw several insights from the above numerical studies.

i) Our numerical study shows the leakage behavior has a negative impact on the total profit. 
Under the price differentian, as the customers’ motivation is enhanced to switch between 
segments, the total profit is decreased (see Table 12). Hence, the results of our numerical study 
clearly imply that retailers who engage in the channel-based retailing should be enabled to deal 
with demand leakage between market segments. As price gaps grow, the customers are tempted 
to find a way to pay lower prices, thus, utility of differential pricing is decreased. Consequently, 
the key condition for the successful price differentiation is to apply appropriate ‘fences’ to 
prevent the customer movement. 

ii) Investigation of the price sensitivity provides a clear understanding about our price-
response function. This parameter, known as price elasticity, measures the sensitivity of 
demand to price. We found that the price elasticity changes the total profit in the presence of 
customer response curve with geometric terms. This is intuitive: for a higher elasticity 
parameter, the supply chain has to expect less profit. Furthermore, scaling constant has a great 
impact on the total profit (See Table 13). It is worthwhile to note that precisely knowing the 
demand structure is an important prerequisite for practitioners in the profit maximization of the 
supply chain. Hence, supply chain planning managers should be rather certain about the 
reliability and accuracy of the data that are used to forecast price elasticity and scaling constant 
over the midterm planning horizon in all market segments.  

iii) While firms allocate limited financial resources for marketing activities, our numerical 
study shows an increased marketing budget can increase profitability. This finding provides 
practitioners with a valuable insight to assign higher investment in marketing-oriented 
activities instead of following the fixed overall marketing budget strategy. In the integrated 
production-marketing environment, this finding helps the managers to improve the profit by 
increasing the marketing budget. 

6. Concluding remarks

In most logistical planning situations, the issues of ordering, price-setting and aggregate 
planning are settled by negotiation between manufacturers, retailers and marketers. Such a 
process often results in a near optimal or optimal policy for one party of the chain; in some 
cases, non-optimal policies for all parties. In this paper, an integrated multi-site supply chain 
aggregate production-marketing planning model is developed through the lens of the revenue 
management that incorporates some realistic features. First, imperfect market segmentation and 
cannibalization behavior are involved in the demand management of the retailing echelon that 
makes a broader application scope for considering different types of customers. Second, we 
consider a novel price and quality-dependent customer demand with geometric terms in 
developing the model, which permits a proper recognition of critical parameters of the 
customers’ demand in marketing analysis especially for the garment products. Third, a 
generalized geometric programming-based solution procedure is taken into account for a highly 
non-linear mathematical model in order to find the equivalent convexified formulation.
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The aggregate production-marketing planning model has not come to an end and the path 
is still open for researchers to study some combinations of differential pricing of integrated 
supply chains and global optimization approaches to take advantage of them simultaneously. 

From a supply chain modelling perspective, we propose two possible directions. First one 
is to explore the current warehousing strategy of cross-docking that involves movement of 
material directly from the receiving dock to the shipping dock with minimum dwell time. 
Second, more complicated supply chain decisions such as procurement, manufacturing and/or 
multi-echelon distribution systems with sustainability consideration could be involved similar 
to that of Sarkar et al. (2016). From a solution methodology perspective, it will be interesting 
to analyze more computational studies that would help improve the solution of global 
optimization programs through the successive refinement of a convex relaxation and the 
subsequent solution of a series of nonlinear convex optimization problems. Although the 
proposed algorithm works satisfactorily with the numerical study, more computational studies 
will be required to test the efficiency of the proposed technique, especially for large-scale 
problems. Generally, GGP is a global optimization algorithm with great potentials for power 
functions. Furthermore, the application of other methods adapting the meta-heuristics 
algorithms is another area recommended for future research.
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Figure A.1, proposed by Tang (2010), presents the conceptual framework for coordination 

between marketing and production. 

Put Figure A.1 here
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Tables

Table 1: Review of some existing models.

Reference

M
ultiple m

anuf. plants

SC
 structure

P: Production, R
: 

R
etailing, SR

: Sales 
R

egion, C
: Sales 

C
hannel, D

: D
istribution

R
everse logistics

Pricing

O
rdering preferences

Q
uality issues

M
arketing aspects

M
ultiple dem

and classes

O
ptim

ization approach

Aucamp (1986) P √ √ LP

Feiring and Mak (1995) P √ LP

Leung et al. (2003) √ P √ LP

Leung et al. (2006) √ P LP

Yenradee and Sarvi (2007) P √ √ LP

Torabi and Hassini (2008) √ S-P-D LP

Leung and Chan (2009) √ P LP
Yenradee and Piyamanothorn 

(2011) P √ LP

Al-e-hashem et al. (2011) √ S-P-SR MONLP

Ghasemy Yaghin et al. (2012) P-R √ √ MONLP

Torabi and Moghaddam (2012) √ P-SR MOLP

Gholamian et al. (2015) √ S-P- SR MOLP

Entezaminia et al. (2016) √ S-P- SR √ MOLP

Gholamian et al. (2016) √ S-P- SR MOLP

Ghasemy Yaghin (2018) √ P-SR √ √ √ NLP

This paper √ P-R-C √ √ √ √ √ GP

http://www.sciencedirect.com/science/article/pii/0307904X86900107
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Table 2: The data set for the supply chain under consideration.

Parameter Corresponding random
distribution Parameter Corresponding random

distribution

1 , 3it t    63,5 10U  it  0.4,0.6U

1 , 4it t    65,7 10U  ith  12,9N

2 , 3it t    62,3 10U  , 2ijtrepc j   115,16N

2 , 4it t    64,5 10U  , 3ijtrepc j   200,16N

3 , 3it t    60.7, 2 10U  , 2h
ijtC j   6,9N

3 , 4it t    62,4 10U  , 3h
ijtC j   12,9N

1it  3,0.01N , 3Hr
jtC t   70, 25N

2it  2.5,0.01N , 4Hr
jtC t   90,16N

3it  2.2,0.01N , 3Fr
jtC t   45, 25N

k  0.3,0.6U , 4Fr
jtC t   25, 25N

LR  0.2,0.4U iInitialinv  20, 25U
rt
ijC  250,81N ijInitialinP  16,20U
ot
ijC  400,196N iInitialbor  0,10U

min , 3itSSIR t   0,12U jtWl  8,12U
min , 4itSSIR t   0,6U max

jtWl  400,480U
min , 3ijtSSIP t   8,12U max ,jtCappl j BQ  420,475U
min , 4ijtSSIP t   10,16U max ,jtCappl j BQ  300,325U

,jt j BQ   0.1,0.15U , 3ijtCWP i   1.5,0.25N

,jt j BQ   0.13,0.2U maxBUD  1500,900N

j  0.5,0.65U irf  0.3,0.5U
max
tCapR  325,375U itCWR  ( ) 0.95,1.05ijtAverage CWP U

Table 3: Market prices to be set (in $).

PeriodsSubmarkets Products 1 2 3 4 5 6
1 40.44 50.04 52.605 61.43 62.25 57.01
2 54.98 53.26 59.94 53.68 61.22 65.94
3 64.50 59.83 51.68 61.47 63.00 64.451

4 67.44 57.22 58.16 68.58 69.64 63.40
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5 64.08 59.45 59.98 64.21 59.08 62.79
6 64.86 58.84 59.03 62.70 57.64 67.55
1 33.08 39.14 40.48 43.30 53.34 43.30
2 43.81 41.85 46.12 49.26 50.70 49.62
3 43.20 43.84 43.44 48.92 48.51 43.75
4 42.75 48.00 47.00 49.76 48.67 45.93
5 44.46 48.71 50.52 56.81 48.16 47.02

2

6 46.58 42.06 45.57 45.84 49.08 43.36
1 25.08 33.32 39.02 37.02 43.58 38.69
2 31.87 36.48 32.64 41.28 38.95 38.51
3 31.729 30.56 32.93 35.31 38.92 37.00
4 32.48 34.62 39.93 47.52 38.95 37.56
5 33.73 30.29 33.66 39.33 34.15 33.86

3

6 30.14 32.73 33.79 37.19 39.42 30.91

Table 4: Quality level of the product from the customers point of view.

Periods
Products 1 2 3 4 5 6

1 0.898 0.969 0.915 0.909 0.93 0.929
2 0.909 0.905 0.928 0.912 0.925 0.926
3 0.931 0.944 0.963 0.911 0.919 0.926
4 0.909 0.951 0.927 0.908 0.925 0.927
5 0.909 0.910 0.924 0.912 0.926 0.928
6 0.911 0.895 0.880 0.913 0.91 0.924
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Table 5: Marketing expenditure quantities (in $).

Periods
Submarkets 1 2 3 4 5 6

1 11.941 10.142 17.4 5.723 8.237 8.706
2 10.809 9.507 11.012 14.625
3 12.25 14.21 8.118

Table 6: Regular time production quantities assigned in each plant to produce the products (in unit).

PeriodsProduction 
sites Products 1 2 3 4 5 6

1 18.737 36.40 50.96 11.88 12.17
2 13.025 37.0 52.19 14.45 16.31 35.27
3 33.001 16.210 14.096 9. 942 7.78
4 9.579 15.632 16.681 16.372 12.91
5 26.385 13.628 23586 24.400 15.986

1

6 19.332 16.373 8.687 27.891
1 13.977 12.872 11.025 12.766 10.872
2 14.889 14.204 8.587 13.071
3 12.441 14.148 23.558 13.102 8.296
4 17.537 15.339
5 12.749 14.458 17.999

2

6 18.327 4.508 22.905 18.928 8.439
1 28.892 27.915 28.663 20.867 27.244
2 24.306 15.343 23.078 14.006
3 23.628 24.371 9.332 6.373 17.187
4 14.409 12.445 13.769
5 24.692 15.311 26.88 13.957 19.356

3

6 23.96 24.71 25.41 35.32
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Table 7: Inventory level of production sites (in unit).

PeriodsProduction sites Products 1 2 3 4 5
1 2.337
2 28.470 35.81 42.379
3 3.159 5.494 7.397
4 32.857 37.379 34.117
5

1

6 1.108 4.313
1 6.516 2.366
2 31.447 39.104 40.420
3 2.538 4.3699 7.358
4 7.657 13.23
5 26.6  2.925

2

6 4.144
1 2.215
2 20.846 10.505 6.524
3 2.913 6.103  6.169  8.481
4 34.550 26.154 26.892   1.997
5

3

6 5.099 5.989

Table 8: Inventory level of retailer at each period (in unit).

PeriodsProducts
1 2 3 4 5 6

1 14.619     12.539 8.802 12.478 9.403 13.491
2 10.431 11.154 12.72 11.463 12.633 10.760
3 12.463 12.331 10.781 10.028 12.169 13.052
4 12.596 9.183 12.491 12.968 13.554 11.382
5 11.534 10.194 12.759 13.598 11.842 14.552
6 9.563 9.778 13.590 9.508 9.562 10.446
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Table 9: Quantities to be ordered at retailing echelon (in unit).

PeriodsProducts Production sites 1 2 3 4 5 6
1 10.446 28.459 12.62 7.77 8.204 10.54
2 10.241 18.606 13.154 9.197 8.608 10.1811
3 12.318 17.587 13.925 8.741 8.283 8.365
1 8.176 19.227 12.654 8.894 7.784 10.598
2 9.818 19.968 13.329 8.854 7.90 10.3252
3 11.462 22.217 12.088 7.579 7.790 8.536
1 10.823 20.447 9.79 7.776 7.764 10.561
2 10.995 20.247 11.516 9.239 8.006 9.7883
3 12.285 18.027 12.860 8.782 8.271 8.542
1 8.876 22.166 10.003 7.264 7.541 9.824
2 8.768 22.235 10.808 10.291 8.186 10.5324
3 11.598 21.698 11.521 7.781 7.892 8.915
1 9.176 17.125 9.211 9.576 9.520 10.588
2 9.228 20.854 11.818 9.752 7.576 11.8835
3 10.868 22.103 11.820 8.409 8.151 9.319
1 7.963 23.559 11.307 7.172 7.633 9.233
2 9.640 23.419 12.040 8.191 7.676 9.4876
3 13.863 18.687 11.879 8.052 8.079 8.10

Table 10: Hiring and firing levels (in man-hour).

jtH jtF
1 2 3 4 5 6 1 2 3 4 5 6

1 5.361 5.806 1.421 17.05 2.881
2 18.30 9.705 6.88 13.11 12.777
3 10.046 18.73 9.870 13.87 8.451

Table 11: Comparison of the obtained computational results.

Objective value Objective value
Data set Proposed 

Algorithm Best solution Gap Data set Proposed 
Algorithm

Best 
solution Gap

1 1.1646 1.0068 0.156734 11 5.1128 4.5755 0.11743
2 1.827 1.603 0.139738 12 8.5638 7.7053 0.11141
3 2.208 1.9775 0.116561 13 1.1199 0.98728 0.13432
4 1.1368 1.0013 0.135324 14 2.4059 2.178 0.10463
5 0.09628 0.0872 0.104128 15 0.88357 0.7701 0.14734
6 1.2522 1.1215 0.11654 16 0.079181 0.07029 0.12649
7 1.8668 1.6845 0.108222 17 3.9528 3.5804 0.10401
8 3.1132 2.8189 0.104402 18 5.7293 5.0683 0.13041
9 6.915 6.2944 0.098596 19 1.9217 1.7366 0.10658
10 1.0228 0.9132 0.120018 20 6.5291 5.9283 0.10134

 

Table 12: Sensitivity analysis on maximum marketing budget and leakage rate.
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Changes in max (%)BUDLR
0.50 0.25 0.25 0.50 0.75

0.15 5.1509 5.7692 6.3598 7.0127 7.2918
0.25 4.9336 5.4715 6.1562 6.7146 6.7773
0.4 4.4128 5.2361 6.4060 6.5760 6.6125
0.6 4.02049 4.8875 6.0209 6.1256 6.3953
0.8 3.7869 4.5881 5.7642 5.7703 5.9043
0.9 3.5201 4.0881 5.1583 5.3021 5.6117

Table 13: Sensitivity analysis on scaling constant of price-dependent demand and price elasticity.

Changes in (%)kit
 (%)kit

0.50 0.25 0.25 0.50 0.75
0.5 6.1677 6.6201 7.1115 7.3290 7.6114

0.25 5.7285 6.3019 6.8908 6.9825 7.3691
0.25 5.2409 5.9114 6.3989 6.5519 6.9109
0.5 4.8912 5.2943 6.0917 6.2104 6.4519


